Preliminary communication

ORGANOMETALLIC COMPOUNDS

XXVI*. FERROCENOPHANE-7-CARBOCATIONS AND THEIR REARRANGEMENT

MASAO HISATOME and KOJI YAMAKAWA*
Faculty of Pharmaceutical Sciences, Science University of Tokyo, Ichigaya-funagawara-machi, Shinjuku-ku, Tokyo 162 (Japan)
(Received April 7th, 1977)

Summary

The PMR spectra of 7-s-hydroxyl derivatives of [4] ferrocenophanes (I- IV, X) in trifluoroacetic acid (TFA) indicated formation of stable 7-carbocations (XIX), and the starting aicohols were recovered by treatment of the TFA solutions with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. On the other hand, the PMR spectral patterns of [4]ferrocenophane6 -carbocations (XX) appeared in the TFA solutions of 7-t-hydroxyl derivatives (V-IX), and quenching the species gave the corresponding 6-ols (XIII-XVII), rearrangement products.

There have been many studies [1] on the NMR spectra of stable ferrocenyl-6carbocations which were formed by dissolving the corresponding 6-hydroxyferrocenes in strong acids. Richards et al. [2] and the present authors [1d] have already suggested generation of ferrocenyl-7-carbocations and a participation of the Fe atom with the 7 -cationic center. In the present communication, formation of stable 7 -s-carbocations and easy rearrangement of 7-t-carbocations to 6 -carbocations in [4] ferrocenophanes are described.

In the PMR spectra of 7-s-hydroxyl derivatives of [4] ferrocenophanes (I-IV, X) in 100% trifluoroacetic acid (TFA), the resonance signals of the ring protons appeared separately in the wide region of the magnetic field ($\delta 3.8-5.8 \mathrm{ppm}$) as sharp lines. The wide spread of the ring proton signals characterizes formation of carbocations [1]. Their spectral patterns were distinct from the ones of the 6-carbocations generated from the corresponding 6-ols (XI, XII etc.); rearrangement of the cationic center into 6-position did not occur, being different from the behavior of 7-t-hydroxyl derivatives in TFA as mentioned below. Furthermore, treatment of the species with aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ recovered the precursor alcohols.

[^0]TABLE 1
the pmr spectral data of [4]ferrocenophanols in thifluoroacetic acid

[^1]The above results suggest strongly that [4]ferrocenophane-7-carbocations (XIX) were generated in the TFA solutions of the 7-hydroxyl derivatives (I-IV, X). Formation of the stable 7-carbocations was supported by the measurement of pK values of [4] ferrocenophan-7-ol and -7 -one [I: +0.1 , XVIII: -4.0] by Ortaggi [3].

The signals observed at $\delta 4.4-4.6 \mathrm{~m}$ in the species formed from 7 -s-hydroxyl derivatives (I, III, IV, X) disappeared in the spectrum of 7-deutero-[4]ferro-cenophan-7-ol (II). Therefore, it was confirmed that the carbinyl protons at the cationic center in the 7 -carbocations resonated at unusually high field.

Reduction of 9 -methyl [4](1,1')- and [4](1,1')[4](3,3')ferrocenophan-7-ones with LiAlH_{4} gave mixtures of the cis and trars ${ }^{*}$ alcohols in isomer ratios of $1: 2$ (III) and $1: 1$ (X), respectively [4]. The PMR spectra of the mixtures in TFA indicated formation of two isomeric species in the same ratios as the alcohols. The 7-hydroxyl derivatives were recovered in the same isomeric ratios as the precursors from the TFA solutions by quenching. According to conformational analysis of the alcohols and the intermediates [5], the retention of the configuration in III indicates that an interannular bridge inversion as shown by Turbitt and Watts [1 h] did not occur in the 7 -carbocations, at room temperature at least, nor in the case of [3]- and [4]ferrocenophan-6-carbocations [4].

On the other hand, the PMR spectra of 7-t-hydroxyl derivatives (V-IX) in TFA were not those of the expected ${ }^{\zeta}$-cationic species. For example, the methyl signals at the 7-position in compounds V-VII were not a singlet line at low field as predicted in the 7-carbocations but doublets at ca. $\delta 1.5$. Furthermore, the signals due to cationic methine protons appeared as doublets at low fields ($\delta 6.4-$ 6.6) in all t-alcohols (V-IX). The results indicate formation of [4]ferro-cenophane-6-carbocations (XX) from 7-carbocations (XIX) via a rearrangement of the cationic center.

Treatment of the TFA solutions of 7-t-hydroxyl derivatives (V-IX) with alkali gave the corresponding rearrangement products (XIII-XVII). The spectra of the TFA solutions of the 6-ols (XIII-XVII) obtained above were identical with those of the original 7-t-ols (V-IX) in TFA, respectively. Accordingly, the rearrangement of the cationic center from the 7 -position to the 6 -position in TFA was shown.

Two stereo isomers ${ }^{* *}$ were isolated from both 7-t-ols VI and IX [4]. The spectrum of the one isomer of each of the 7 -t-ols in TFA was the same as that of the other; only the single 6-carbocation was formed from the two isomers in spite of the possibility of several isomers in the 6 -carbocation. Quenching the TFA solution of each alcohol (VI, IX) gave only one isomer of 6-ol (XIV, XVII).

The different behavior of the 7 -t-ols from the 7 -s-ols in TFA is particularly interesting. The unusually high field shift of the 7-protons in the 7-s-carbocations suggests the presence of the proton in a deshielding zone of the Fe atom [6]. If one of the stabilization factors of the 7-carbocations is a participation of the Fe atom with the cationic center accompanied by approaching each other, it is reasonable that the 7 -t-carbocations cannot be stabilized by the metal-participation due to steric hindrance of the bulky substituent at the 7-position, and that

[^2]the cationic center was then rearranged into the 6^{2}-position to give more stabie 6 -carbocation (see Scheme 1 and Table 1.)

i $: R^{\prime}=R^{2}=-$
 $P \cdot R=D \cdot R^{2}=H$
II $: \dot{R}=h \cdot R^{2}=i v e$
IV $\cdot R^{\prime}=4 \cdot R^{2}=P M$ ᄑ: $R^{\prime}=$ Ne. $R^{2}=-$ I. $\cdot R^{i}=R^{2}=R_{i}=$

$\mathbb{Z} \quad \hat{z}^{i}=\mathrm{Fh} \cdot \mathfrak{a}^{\hat{z}}=\mathrm{Me}$

\[

$$
\begin{aligned}
& \text { Xi : } R^{i}=R^{2}=1 \\
& \text { XII : } R^{2}=H, R^{2}=\text { Be } \\
& \text { 攻: } R^{1}=N, R^{2}=H \\
& \overline{E I I}: R^{1}=R^{2}=M e \\
& \text { II : } R^{1}=\mathrm{Me} \cdot \mathrm{R}^{2}=P R^{2} \\
& \text { 즌: } R^{1}=P_{n}, R^{2}=r i \\
& \overline{L I} \cdot \bar{R}^{2}=P n, R^{2}=\mathrm{Me}
\end{aligned}
$$
\]

(EIEI:

SCHEME 1. Generation oi 7-carbocations and their rearrangement.

References

= (a) M. Cais, J.J. Dannenberg. A. Eisenstadt, MI.I. Levenberg and J.H. Richards, Tetrahedron Lett., (1966) 1695; (b) J. Feinberg and M. Rosenblum, J. Amer. Chem. Soc., 91 (1969) 4324: (c) M. Hisatome and K. Isamakawa, Tetrahedron, 27 (1971) 2101; (d) M. Fisatome and K. Yamakawa, Tetrahedron Iett., (1971) 3533; (e) R.G. Sutherdand, J.R. Sutton and W.M. Horspool, Tetrahedron Lett., (1973) 3283; (fy V.I. Sotolov, P.V. Petrovskii and O.A. Reutov, J. Organometal. Chem., 59 (1973) C27; (g) G.F. Williams, D.D. Traficante and D. Seyferth, J. Organometal Chem. 60 (1973) C53: (h) D.T. Turioitt and W.E. Watts, I. Chem. Soc. Perkin II, (1974) 177; (i) G.A. Olan and G. Liang, J. Organometal. Chem., (1975) 1849 ; (i) S. Bran and W.E. Watts, J. Organometal. Chem., (1975) C33; (k) A.A. Koridze, P.V. Petrovshii. S.P. Gubin and E.I. Fedin. J. Organometal. Chem., 93 (1875) C26; (1) F.E. Watts, J. Chem. Soc. Perinin I. (1976) 804.

2 M.J. Nugent, R. Kummer and J.H. Richards, J. Amer. Chem. Soc., 91 (1969) 6141.
3 G. Ortaggi. private communication. The samples were offered by the authors
4 H. Hicatome and K. Yamakawa, Sth Symposium on Stuructural Organic Cheraistry, Sendai (1976), Symposium papers, pp. 191.
5 Detailed discussions will be described in a full paper.
6 T.D. Turbitt and WV.E. Watis, Tetrahearon, 28 (1972) 1227.
7 M. Kisatome and K. Yamakawa. Org \$iass. Spectr. subritted for publication.

[^0]: *For part XXV, see Ref. 7.

[^1]: ${ }^{\text {a }}$ Tho spectra were mensured with a JEOL JNM- $4 \mathrm{II}-100$ spectrometer at 100 MHz with TMS as internal reference and at room temperature. The assignments of the signals were determined by the spin-decoupling technique. Clemical shifts and coupling constants are indicated in δ (ppm) and Hz, respectively (J_{0} and J_{m} : ortho and
 were measured in the degassed solutions free from oxysen, because of casy oxidation of the species generated in trifluoroncetic ach. ${ }^{\text {e }}$ The chemical shifts or J-values were not definitely determined, because of overlapping, with other signals.

[^2]: *The indication of cis and trans in this paper means the configurational relation of the substituents \mathbf{R}^{1} and R^{2} except for X, in which cis and trans indicate the direction of the 7 -hydrogen to the otherbriage.
 ${ }^{* *}$ cis-VI: m.p. $116-117^{\circ} \mathrm{C}$; trans-VI: m.p. $134-135^{\circ} \mathrm{C}$; cis-IX: m.p. 81-83 ${ }^{\circ} \mathrm{C}$ and trans-IX: m.p. 90-91 ${ }^{\circ} \mathrm{C}$.

